CARDIOVASCULAR RISK PREDICTION IN CHILDREN - WITH FOCUS ON OBESITY

Authors

  • Bojko Bjelaković Clinic of Paediatrics, Clinical Center, Niš, Medical Faculty, University of Niš, Serbia

DOI:

https://doi.org/10.46793/PP151102005B

Keywords:

cardiovascular risk, children, obesity

Abstract

The majority of children at risk for future cardiovascular disease who need specific and systematic cardiovascular risk assessments are obese children. However, there are still many unresolved questions related to pathophysiology, recognition and management of obese children. Currently, the most prevalent paradigm for identifying children at risk for cardiovascular events is based on the population approach and identification of the level and/or number of traditional risk factors. However risk assessment methods based on, traditional risk factors solely have proven to be suboptimal and unreliable. Since early atherosclerosis commonly occurs in the absence of abnormal threshold levels of risk factors, the traditional risk factors based approach has recently shifted to “individual-based approach”. Such a new concept is focused on the identification of asymptomatic structural target organ changes or more recently subclinical functional cardiac or vascular target organ changes to identify children at risk.

References

Hartiala O, Magnussen CG, Kajander S, Knuuti J, Ukkonen H, Saraste A, et al. Adolescence risk factors are predictive of coronary artery calcification at middle age: the cardiovascular risk in young Finns study. J Am Coll Cardiol [Internet]. Elsevier Inc.; 2012 Oct 9 [cited 2015 Jan 3];60(15):1364–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22981553

Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation [Internet]. 2008 Jun 24 [cited 2014 Dec 27];117(25):3171–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3568631&tool=pmcentrez&rendertype=abstract

Ferreira AP, Oliveira CER, França NM. Metabolic syndrome and risk factors for cardiovascular disease in obese children: the relationship with insulin resistance (HOMA-IR). J Pediatr (Rio J) [Internet]. 2007 Feb 1 [cited 2015 Jan 3];83(1):21–6. Available from: http://www.jped.com.br/conteudo/Ing_resumo.asp?varArtigo=1562&cod=&idSecao=4

Lurbe E, Cifkova R, Cruickshank JK, Dillon MJ, Ferreira I, Invitti C, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens [Internet]. 2009 Sep [cited 2014 Dec 18];27(9):1719–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19625970

Mahoney LT, Thompson BH, Lauer M, Burns TL, Witt JD. Coronary Risk Factors Measured in Childhood and Young Adult Life Are Associated With Coronary Artery Calcification in Young Adults : The Muscatine Study. 21(2).

McGill HC, McMahan C a., Zieske a. W, Malcom GT, Tracy RE, Strong JP. Effects of Nonlipid Risk Factors on Atherosclerosis in Youth With a Favorable Lipoprotein Profile. Circulation [Internet]. 2001 Mar 20;103(11):1546–50. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/01.CIR.103.11.1546

Morrison KM, Dyal L, Conner W, Helden E, Newkirk L, Yusuf S, et al. Cardiovascular risk factors and non-invasive assessment of subclinical atherosclerosis in youth. Atherosclerosis [Internet]. 2010 Feb [cited 2015 Jan 3];208(2):501–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19699477

Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol [Internet]. 2006 Jun [cited 2015 Jan 3];21(6):811–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16565870

Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension [Internet]. 2013 Sep [cited 2015 Jan 3];62(3):550–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23817494

Richey P a, Disessa TG, Somes GW, Alpert BS, Jones DP. Left ventricular geometry in children and adolescents with primary hypertension. Am J Hypertens [Internet]. Nature Publishing Group; 2010 Jan [cited 2015 Jan 3];23(1):24–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2795788&tool=pmcentrez&rendertype=abstract

Gaziano T a, Young CR, Fitzmaurice G, Atwood S, Gaziano JM. Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort. Lancet [Internet]. 2008 Mar 15;371(9616):923–31. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2864150&tool=pmcentrez&rendertype=abstract

Kones R. Primary prevention of coronary heart disease: integration of new data, evolving views, revised goals, and role of rosuvastatin in management. A comprehensive survey. Drug Des Devel Ther [Internet]. 2011 Jan [cited 2014 Dec 10];5:325–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3140289&tool=pmcentrez&rendertype=abstract

Desai D a, Zakaria S, Ouyang P. Initiation of statin therapy: are there age limits? Curr Atheroscler Rep [Internet]. 2012 Feb [cited 2015 Jan 3];14(1):17–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22086344

Yang EY, Nambi V, Tang Z, Virani SS, Boerwinkle E, Hoogeveen RC, et al. Clinical implications of JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) in a U.S. population insights from the ARIC (Atherosclerosis Risk in Communities) study. J Am Coll Cardiol [Internet]. 2009 Dec 15 [cited 2015 Oct 8];54(25):2388–95. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2829945&tool=pmcentrez&rendertype=abstract

Murphy TP, Dhangana R, Pencina MJ, Zafar AM, D’Agostino RB. Performance of current guidelines for coronary heart disease prevention: optimal use of the Framingham-based risk assessment. Atherosclerosis [Internet]. 2011 Jun [cited 2015 Aug 26];216(2):452–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21411089

Sachdeva A, Cannon CP, Deedwania PC, Labresh KA, Smith SC, Dai D, et al. Lipid levels in patients hospitalized with coronary artery disease: an analysis of 136,905 hospitalizations in Get With The Guidelines. Am Heart J [Internet]. 2009 Jan [cited 2015 Sep 28];157(1):111–7.e2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19081406

Futterman LG, Lemberg L. Fifty percent of patients with coronary artery disease do not have any of the conventional risk factors. Am J Crit Care [Internet]. 1998 May [cited 2015 Oct 8];7(3):240–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9579251

Lloyd-jones DM. Risk Prediction in Cardiovascular Medicine Cardiovascular Risk Prediction Basic Concepts , Current Status , and Future Directions Rationale for CVD Risk Prediction. 2010;1768–77.

Gränsbo K, Almgren P, Sjögren M, Smith JG, Engström G, Hedblad B, et al. Chromosome 9p21 genetic variation explains 13% of cardiovascular disease incidence but does not improve risk prediction. J Intern Med [Internet]. 2013 Sep 25 [cited 2015 Oct 8];274(3):233–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23480785

Joshi PH, Nasir K. Discordance between Risk Factors and Coronary Artery Calcium: Implications for Guiding Treatment Strategies in Primary Prevention Settings. Prog Cardiovasc Dis [Internet]. Jan [cited 2015 Oct 8];58(1):10–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25982215

Kengne AP, Patel A, Colagiuri S, Heller S, Hamet P, Marre M, et al. The Framingham and UK Prospective Diabetes Study (UKPDS) risk equations do not reliably estimate the probability of cardiovascular events in a large ethnically diverse sample of patients with diabetes: the Action in Diabetes and Vascular Disease: Preterax. Diabetologia [Internet]. 2010 May [cited 2015 Oct 8];53(5):821–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20157695

Magnussen CG, Koskinen J, Chen W, Thomson R, Schmidt MD, Srinivasan SR, et al. Paediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study. Circulation [Internet]. 2010 Oct 19 [cited 2015 Oct 7]; 122(16):1604 – 1611. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3388503&tool=pmcentrez&rendertype=abstract

Baker JL, Olsen LW, Sørensen TIA. Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med [Internet]. 2007 Dec 6 [cited 2015 Oct 26];357(23):2329–37. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3062903&tool=pmcentrez&rendertype=abstract

Lloyd LJ, Langley-Evans SC, McMullen S. Childhood obesity and adult cardiovascular disease risk: a systematic review. Int J Obes (Lond) [Internet]. 2010 Jan [cited 2015 Oct 6];34(1):18–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19434067

McMullen S. Childhood obesity: the impact on long-term risk of metabolic and CVD is not necessarily inevitable. Proc Nutr Soc [Internet]. 2014 Jul 16 [cited 2015 Oct 22];73(03):389–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25027289

Berenson GS. Bogalusa Heart Study: a long-term community study of a rural biracial (Black/White) population. Am J Med Sci. 2001;322(5):293–300.

Laitinen TT, Pahkala K, Venn A, Woo JG, Oikonen M, Dwyer T, et al. Childhood lifestyle and clinical determinants of adult ideal cardiovascular health: the Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Princeton Follow-Up Study. Int J Cardiol [Internet]. 2013 Oct 30 [cited 2015 Oct 9];169(2):126–32. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3863693&tool=pmcentrez&rendertype=abstract

Oikonen M, Laitinen TT, Magnussen CG, Steinberger J, Sinaiko AR, Dwyer T, et al. Ideal cardiovascular health in young adult populations from the United States, Finland, and Australia and its association with cIMT: the International Childhood Cardiovascular Cohort Consortium. J Am Heart Assoc [Internet]. 2013 Jun [cited 2015 Oct 13];2(3):e000244. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3698791&tool=pmcentrez&rendertype=abstract

Tryggestad JB, Thompson DM, Copeland KC, Short KR. Obese Children Have Higher Arterial Elasticity Without a Difference in Endothelial Function: The Role of Body Composition. Obesity [Internet]. Nature Publishing Group; 2012;20(1):165–71. Available from: http://dx.doi.org/10.1038/oby.2011.309/nature06264

Raitakari OT, Rönnemaa T, Järvisalo MJ, Kaitosaari T, Volanen I, Kallio K, et al. Endothelial function in healthy 11-year-old children after dietary intervention with onset in infancy: the Special Turku Coronary Risk Factor Intervention Project for children (STRIP). Circulation [Internet]. 2005 Dec 13 [cited 2015 Jan 3];112(24):3786–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16330680

Arrebola-Moreno AL, Laclaustra M, Kaski JC. Noninvasive assessment of endothelial function in clinical practice. Rev Esp Cardiol (Engl Ed) [Internet]. 2012;65(1):80–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22099430

Downloads

Published

12/30/2015

Issue

Section

Review Articles